Плиты перекрытий – это несущие конструкции зданий, воспринимающие постоянные и временные нагрузки в пределах одного этажа.
Плиты укладываются в пролёте между вертикальными опорами – стенами, пилонами или колоннами.
Преимущественно работают на изгиб и выполняют роль жёсткого диска, объединяющего отдельные элементы каркаса сооружения в единую геометрически неизменяемую систему.
При расчёте плит перекрытий определяются такие важные параметры, как их толщина, армирование, прогиб и необходимость устройства дополнительных подпирающих элементов (балок или капителей).
Как провести расчет нагрузок на перекрытие, расскажем далее.
Что это такое?
Нагрузки, прикладываемые к перекрытию, представляют собой сочетание внешних сил, действующих на конструктивный элемент, вызывая в нём внутренние усилия. Несущая способность элемента определяется из условия равновесия, достигаемого при приложении нагрузок.
Виды нагрузок на плиты перекрытий по СНиП и СП
Нагрузки на пролётные конструкции определяются, исходя из требований нормативных документов – СНиП 2.01.07-85 и его обновлённой версии – СП 20.13330.2011 «Нагрузки и воздействия».
В соответствии с пунктами этих нормативов, нагрузки классифицируются на следующие виды:
-
Полезные – нагрузки, необходимые для обеспечения комфортной эксплуатации помещения, в соответствии с его функциональным назначением.
Например, в жилых квартирах или частных домах – это нагрузки от мебели, бытовых приборов и самих жильцов.
В магазинах – от посетителей, персонала, прилавков, стеллажей и оборудования, необходимого для функционирования помещения.
- Допустимые – сочетание внешних сил, приложенных к перекрытию, при котором оно продолжает удовлетворять всем предъявляемым к нему эксплуатационным требованиям без наступления необратимых последствий.
- Постоянные – нагрузки, которые действуют на протяжении всего периода эксплуатации помещения. К таким видам загружения относятся собственный вес плит, масса пирога пола и штамповые нагрузки от конструктивных элементов, без которых эксплуатация помещения не представляется возможной.
- Временные – нагрузки от веса оборудования, мебели, людей и другие виды сил, которые прикладываются к несущему элементу на определённый промежуток времени.
- Предельные – максимальная величина нагрузки, при приложении которой в конструктивном элементе начинают происходить необратимые процессы – пластические деформации, бесконтрольное раскрытие трещин, а также обрушение перекрытия.
В зависимости от функционального назначения помещений, величины полезных нагрузок различаются.
В жилом помещении равномерно распределённые по площади временные нагрузки составляют 150 – 200 кгс/м2, а в общественных зданиях, в зависимости от особенностей технологического процесса они составляют уже 250 – 500 кгс/м2.
Расчёт пролетных конструкций
Расчёт пролётных конструкций ведётся по двум группам предельных состояний:
- 1 группа – подбирается такие параметры жёсткости конструктивного элемента, при которых оно не потеряет прочность под действие сочетания постоянных, временных и особых нагрузок;
- 2 группа – расчёт по деформациям, при котором определяется фактический прогиб перекрытия, после чего это значение сравнивается с предельно допустимыми значениями из СНиП.
На несущую способность плит перекрытий влияет величины постоянных и полезных нагрузок, толщина элемента, длина пролёта и условия эксплуатации помещения.
Как рассчитать значения?
Расчёт нагрузок на плиту перекрытия производится методом суммирования всех приложенных к конструктивному элементу внешних сил, с учётом различных коэффициентов запаса, принимаемых по указанному выше СНиП. Если рассмотреть теоретические выкладки, то расчёт нагрузок делится на следующие категории:
Расчёт сводится к вычислению максимально допустимого значения приложенных на конструкцию внешних сил, при которых конструкция достигает предельного равновесия.
Например, на основании представленного ниже расчёта – при приложении суммарной расчётной нагрузки 900 кг/м2 на плиту перекрытия толщиной 200 мм, армированную прутками d10 A500s с шагом 200 мм, достигается фактический изгибающий момент М = 2812,5 кН*см при пролёте 5 м.
А сечение с такими параметрами остаётся в равновесии при достижении момента Мпред = 2988.5 кН*см, что всего на 5,8% выше предельного значения.
Учитывая, что момент в изгибаемом сечении под действием равномерно распределённой нагрузки равняется M = q х l2 / 8, то qпред = 8M/l2, или qпред = 8 х 2998.5 / 25 = 956.32 кг/м2 – при такой внешней силе сечение установленных параметров перестанет удовлетворять предельному равновесию, и данная нагрузка является предельной.
Как правило, такие силы не прикладываются к перекрытию отдельно – всегда существуют постоянные нагрузки, и единичное точечное загружение суммируется с ними.
Приложенная точечная нагрузка влияет на значение опорных реакций и величину изгибающего момента в расчётном сечении. Усилия от точечного загружения определяется как произведение силы на плечо (расстояние от ближайшей точки опоры).
Например, если в комнате с пролётом 5 метров стоит декоративная колонна массой 500 кг на расстоянии от стены 2 м, то расчётная нагрузка с учётом коэффициента запаса (gn для постоянных сил = 1,05) составит 525 кг. Момент в данной точке составит 525 кг х 2 м = 1050 кг * м, или 1050 кН * см.
Соответственно, при добавлении равномерно распределённого загружения, описанного выше, стандартное сечение плиты с армированием d10 A500s с шагом 200 мм не будет удовлетворять расчёту прочности, и данное место следует усилить дополнительными стержнями, например, d10 A500s ш. 200 + d12 A500s ш. 200.
Учитывая, что жб плита перекрытия работает по упруго-пластической схеме, все внутренние усилия в ней перераспределяются по площади и объёму.
СНиП допускает не производить расчёт временных нагрузок на плиту от конкретных предметов, а учитывать приведённую равномерно-распределённую по площади поверхности силу.
Например, вдоль стены комнаты, на протяжении 3 м стоит гарнитур общей массой 400 кг, напротив – диван массой 200 кг и другие предметы мебели с разными весами. По данному помещению каждый день передвигаются 4 человека с массами тела от 50 до 120 кг.
По факту, точно посчитать нагрузку не представляется возможным, но СП 20.13330.2011 допускает учитывать в статическом расчёте приведённую равномерно распределённую нагрузку для жилых помещений 150 кг/м2.
Пример
Ниже представлен пример сбора нагрузок на перекрытие в частном жилом доме. По условию задачи, габариты комнаты составляют 7 х 4 м, плита перекрытия 200 мм, поверх которой уложена ц/п стяжка толщиной 50 мм по подложке из экструдированного пенополистирола 30 мм, а в качестве чистового пола применяется керамогранитная плитка толщиной 12 мм с клеевым составом 3 мм.
Требуется собрать расчётные нагрузки на данную конструкцию для последующего расчёта. Задача решается с выполнением следующих этапов:
Собственный вес плиты – M1 = S x h x rбет, где:
- S – площадь поверхности перекрытия, равный 5 м х 4 м, или 2 м2,
- h – толщина плиты, которая составляет 200 мм, или 0,2 м,
- rбет – средняя плотность армированного бетона, которая равна 2500 кг/м2.
- M1 = 20 м2 х 0,2 м х 2500 кг/м2 = 10 000 кг.
Масса полов – M2 = mподл + mстяж + mплит, где:
- mподл = S x hподл х rпенопол = 20 м2 х 0,03 м х 40 кг/м2 = 24 кг,
- mстяж = S x hстяж х rц/п р-ра = 20 м2 х 0,05 м х 1800 кг/м2 = 1800 кг,
- mплит = S x hплит х rкерамогр = 20 м2 х 0,015 м х 2400 кг/м2 = 720 кг (значение принимается с учётом слоя плиточного клея).
M2 = 24 кг + 1800 кг + 720 кг = 2544 кг. В жилом помещении рекомендуемая по СНиП временная нагрузка составляет q = 150 кгс/м2.
Таким образом, суммарная полезная нагрузка на плиту составляет F = q x S = 150 х 20 = 3000 кг:
- Общая вертикальная нагрузка, приложенная к плите, равняется Fобщ = M1 + M2 + F = 10000 кг + 2544 кг + 3000 кг = 15544 кг, или 1554,4 кН.
- Как правило, нормативные нагрузки необходимо привести к расчётным величинам, учитывая коэффициенты надёжности. Данный показатель записывается как gn, и для постоянных загружений он составляет 1,1, а для полезной нагрузки – 1,4.
Таким образом, Fобщ расч = (M1 + M2) x gnс пост + F x gn врем = (10000 кг + 2544 кг) х 1,1 + 3000 кг х 1,4 = 13798,4 кг + 4200 кг = 17998.4 кг ~ 18000 кг, или 1800 кН.
Чтобы привести суммарное значение данной величины в равномерно распределённую нагрузку, достаточно разделить его на общую площадь комнаты. То есть Qобщ расч = Fобщ расч / S = 1800 кН / 20 м2 = 90 кН/м2, или 900 кг/м2.
При наличии точечной или штамповой нагрузки от веса какого-либо оборудования, она участвует в расчёте отдельно, формируя линейную, а не квадратичную зависимость изгибающего момента.
В отдельных случаях допускается разложить точечную нагрузку на равномерно распределённую по площади, с учётом повышающего коэффициента, так как железобетон не является упругим материалом, и все усилия в нём перераспределяются в большей части его объёма.
Безбалочная плита перекрытия должна удовлетворять расчёту по прочности, или первой группе предельных состояний. Чтобы определить несущую способность перекрытия, необходимо выполнить следующий алгоритм:
-
Если соотношения габаритов перекрытия а/b или b/a > 2, то такая плита работает по короткой стороне.
Если данные показатель меньше 2, то плита считается опёртой по контуру, и расчёт ведётся относительно того пролёта, в котором возникает наибольший изгибающий момент.
Значение момента прямо пропорционально величине пролёта, поэтому в рассматриваемом примере расчёт ведётся относительно стороны a = 5 м.
- Из плиты выделяется расчётная полоса шириной 1 м, которая будет рассматриваться как изгибаемый линейный элемент, или балка с приложенной к ней равномерно распределённой по длине нагрузкой.
В рассматриваемом примере балка имеет сечение b x h = 1 м х 0,2 м, и к ней приложена нагрузка qрасч = 900 кг/м, или 90 кН/м.
Величина изгибаемого момента для подобной конструкции составляет M = qрасч х l2 / 8, где l – величина пролёта, или 5 м. M = 90 кН/м х 5 х 5 / 8 = 281.25 кН*м, или 2812,5 кН*см.
Величина изгибающего момента может быть отображена на эпюре данного вида усилия, возникающего в конструкции.
При известной величине изгибающего момента и габаритов (жёсткости сечения) можно определить несущую способность данного пролётного элемента по следующим формулам:
Высота сечения плиты складывается из двух величин h = h0 + a, где h0 – рабочая высота от нижней арматуры, находящейся в зоне растяжения до верхней грани бетона. а – величина защитного слоя бетона. Как правило, этот показатель в тонких плитах варьируется в пределах от 15 до 25 мм. h0 = h – a = 200 мм – 20 мм = 180 мм.
В строительной механике, согласно по СП 63.13330.2018 «Бетонные и железобетонные конструкции», существуют два условия, при которых конструкция достигает предельного равновесия под действием внешних сил.
Rs As = Rbbx, где:
- M = Rbbx (h0 – x/2),
- Rs – предел прочности арматурной стали заданного класса на растяжение,
- Rb – тот же показатель, но для бетона, на сжатие, зависящий от марки материала.
Если в плите принимается наиболее распространённая арматура класса A500s, то Rs = 43,5 кН/см2. Если бетон в рассматриваемом примере имеет класс B30, то Rb = 1,7 кН/см2.
В условии равновесия х – абсолютная величина сжатой зона бетона, которая равняется х = Rs Аs / gb1 Rbb (по СП 63.13330.2018 «Бетонные и железобетонные конструкции»):
- As – площадь всех стержней рабочей арматуры в растянутой зоне сечения плиты,
- gb1 – коэффициент запаса, зависящий от условий работы бетона в конструкции, для стандартных вариантов эксплуатации перекрытия принимается равным 0,9.
Требуемая площадь рабочей арматуры зависит от расчётных параметров сечения и величины внутренних усилий (в плите перекрытия – изгибающего момента).
Аs = gb1Rbbeh0/Rs (по СП 63.13330.2018):
-
e – безразмерная величина, характеризующая относительную высоту сжатой части бетонного сечения, которая определяется из соотношения e = (1 – (1 – 2am)1/2),
- am – это показатель, описывающий отношение изгибающего момента к прочностным характеристикам жб сечения, определяемый по формуле СП,
- am = M / (gb1 Rbbh02) = 2812,5 / (0,9 х 1,7 х 100 х 324) = 2812,5 кН*см / 49572 = 0,057.
Аs = 0,9 х 1,7 х 100 х 0,057 х 18 / 43,5 = 3,61 см2.
Для предотвращения образования трещин от усадки бетона, в плитах перекрытий шаг рабочей арматуры, чаще всего, назначается 200 мм. Таким образом, в расчётной полосе шириной 1 м располагается 5 рабочих стержней.
В данном примере допускается рассмотреть армирование из 5d10, и реальная площадь стержней составит 3,93 см2, что больше, чем требуемое значение, с учётом повышающих коэффициентов. При известных значениях площади армирования, можно определить величину х: х = Rs Аs / gb1 Rbb = 43,5 х 3,93 / (0,9 х 1,7 х 100) = 1,12 см.
На завершающем этапе из основного условия равновесия определяется предельно допустимый момент, который может возникнуть в сечении плиты перекрытия. M = gb1 Rbbx(h0 – x/2) = 0,9 х 1,7 х 100 х 1,12 х (18 – 1,12/2) = 2988.5 кН*см.
Далее остаётся сравнить предельно допустимый момент 2988.5 кН*см с фактическим усилием, возникающим после приложения нагрузок – 2812,5 кН*см, который оказался меньше, значит, условие прочности выполняется.
В случае, если условие предельного равновесия не достигается, толщина плиты, а также расчётное количество рабочей арматуры должны быть пересмотрены.
В строительной механике понятия прочности и несущей способности практически не имеют различий. Однако, на практике это не совсем так. Прочность – это способность конструктивного элемента не разрушаться под действием внешних сил. Несущая способность – это способность конструктивного элемента удовлетворять предъявленным к нему эксплуатационным требованиям под действием сочетания нагрузок.
Таким образом, расчёт по предельным состояниям 1 группы, приведённый выше, показывает, что плита перекрытия остаётся в статическом положении не разрушается, (то есть, обеспечивается её прочность) и может эксплуатироваться в нормальных условиях (так как в расчёте были учтены все коэффициенты условий работы). Проведения дополнительных прочностных расчётов не требуется.
Возможные сложности и ошибки
При расчёте сечения плиты перекрытия на прочность, следует учитывать важные нюансы, чтобы не допустить серьёзных ошибок:
-
Расчёты должны проводиться в строгом соответствии с требованиями нормативных документов.
- При вычислениях все единицы измерения должны быть приведены к единым значениям, а, в противном случае, результат будет далёким от истины.
- При определении изгибающего момента следует учесть характер опирания плиты перекрытия, так как формулы для жёсткой заделки или шарнирного сопряжения отличаются друг от друга.
- При сборе нагрузок не следует забывать коэффициенты надёжности, которые усугубляют теоретическую работу конструкции и приближают её к реальным условиям.
Последствия неверных расчётов могут привести к обрушению строительных конструкций, недопустимым прогибам и другим непоправимым проблемам во время эксплуатации сооружения.
Заключение
Перед назначением толщины и армирования плиты перекрытия необходимо провести расчёт прочности изгибаемого элемента. Вычисления выполняются после сбора постоянных и временных нагрузок и определения внутренних усилий в конструкции.
Если результаты расчёта не удовлетворяют условиям предельного равновесия, необходимо задать другую толщину плиты и провести вычисления заново.